
Untitled-2 1 11/06/18 1:39 PM

MATLAB® for Engineers

A01_MOOR1204_05_GE_FM.indd 1 31/05/2018 16:58

This page intentionally left blank

A01_PERL5624_08_GE_FM.indd 24 2/12/18 2:58 PM

MATLAB® for Engineers

Fifth Edition
Global Edition

Holly Moore
Salt Lake Community College
Salt Lake City, Utah

330 Hudson Street, NY NY 10013

A01_MOOR1204_05_GE_FM.indd 3 31/05/2018 16:58

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate
page within text. MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.

Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9NA
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2019

The rights of Holly Moore to be identified as the author of this work have been asserted by her in accordance with the Copyright, Designs
and Patents Act 1988.

Authorized adaptation from the United States edition, entitled MATLAB® for Engineers, 5th Edition, ISBN 978-0-13-458964-0 by Holly Moore,
published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a
license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby
Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author
or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or
endorsement of this book by such owners.

ISBN 10: 1-292-23120-3
ISBN 13: 978-1-292-23120-4

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

Typeset by SPi Global
Printed and bound by Vivar in Malaysia

Director, Portfolio Management: Engineering, Computer Science
& Global Editions: Julian Partridge

Specialist, Higher Ed Portfolio Management: Holly Stark
Portfolio Management Assistant: Amanda Brands
Acquisitions Editor, Global Edition: Moasenla Jamir
Managing Content Producer: Scott Disanno
Content Producer: Carole Snyder
Assistant Project Editor, Global Edition: Aman Kumar
Web Developer: Steve Wright
Manager, Media Production, Global Edition: Vikram Kumar
Rights and Permissions Manager: Ben Ferrini

Manufacturing Buyer, Higher Ed, Lake Side Communications Inc
(LSC): Maura Zaldivar-Garcia

Senior Manufacturing Controller, Global Edition: Angela Hawksbee
Inventory Manager: Ann Lam
Product Marketing Manager: Yvonne Vannatta
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Cover Designer: Lumina Datamatics, Inc.
Full-Service Project Management: SPi Global
Cover Image: Venomous Vector / Shutterstock

A01_MOOR1204_05_GE_FM.indd 4 31/05/2018 16:58

http://www.pearsonglobaleditions.com/

Contents

ABOUT THIS BOOK	 11
DEDICATION AND ACKNOWLEDGMENTS	 15

1  •  ABOUT MATLAB®	 17

1.1	 What is Matlab®?   17
1.2	 Student Edition of Matlab®   18
1.3	 How is Matlab® Used in Industry?   19
1.4	 Problem Solving in Engineering and Science   21

2  •  MATLAB® ENVIRONMENT	 25

2.1	 Getting Started   25
2.2	 Matlab® Windows   27
2.3	 Solving Problems With Matlab®   33
2.4	 Saving Your Work   57
Summary  68
Matlab® Summary  69
Key Terms  71
Problems  71

3  •  BUILT-IN MATLAB® FUNCTIONS	 78

Introduction  78
3.1	 Using Built-In Functions   78
3.2	 Using the Help Feature   80
3.3	 Elementary Math Functions   83
3.4	T rigonometric Functions   91
3.5	 Data Analysis Functions   95
3.6	 Random Numbers   114
3.7	 Complex Numbers   119
3.8	 Computational Limitations   122
3.9	 Special Values and Miscellaneous Functions   124
Summary  126

5

A01_MOOR1204_05_GE_FM.indd 5 31/05/2018 16:58

6  Contents

Matlab® Summary  126
Key Terms  128
Problems  128

4  •  MANIPULATING MATLAB® MATRICES	 135

4.1	 Manipulating Matrices   135
4.2	 Problems with Two Variables—Using Meshgrid   142
4.3	 Special Matrices   149
Summary  155
Matlab® Summary  155
Key Terms  156
Problems  156

5  •  PLOTTING	 162

Introduction  162
5.1	T wo-Dimensional Plots   162
5.2	 Subplots   179
5.3	 Other Types of Two-Dimensional Plots   181
5.4	T hree-Dimensional Plotting   198
5.5	 Editing Plots From the Menu Bar   205
5.6	 Creating Plots From the Workspace Window   207
5.7	 Saving Your Plots   208
Summary  209
Matlab® Summary  209
Problems  211

6  •  LOGICAL FUNCTIONS AND SELECTION STRUCTURES	 222

Introduction  222
6.1	 Relational and Logical Operators   223
6.2	 Flowcharts and Pseudocode   225
6.3	L ogical Functions   227
6.4	 Selection Structures   233
6.5	 Debugging   250
Summary  250
Matlab® Summary  251
Key Terms  251
Problems  252

7  •  REPETITION STRUCTURES	 264

Introduction  264
7.1	For Loops   265
7.2	While Loops   273
7.3	Break and Continue   281
7.4	 Midpoint Break Loops   282

A01_MOOR1204_05_GE_FM.indd 6 31/05/2018 16:58

Contents  7

7.5	 Nested Loops   286
7.6	 Improving the Efficiency of Loops   287
Summary  290
Matlab® Summary  291
Key Terms  291
Problems  291

8  •  USER-CONTROLLED INPUT AND OUTPUT	 297

Introduction  297
8.1	 User-Defined Input   297
8.2	 Output Options   302
8.3	 Graphical Input   313
8.4	 More Features Using Section Dividers   314
8.5	 Reading and Writing Data from Files   316
8.6	 Debugging Your Code   319
Summary  323
Matlab® Summary  324
Key Terms  325
Problems  325

9  •  USER-DEFINED FUNCTIONS	 330

Introduction  330
9.1	 Creating Function Files   330
9.2	 Creating Your Own Toolbox of Functions   349
9.3	A nonymous Functions and Function Handles   350
9.4	 Function Functions   352
9.5	 Subfunctions   353
Summary  359
Matlab® Summary  360
Key Terms  360
Problems  360

10  •  MATRIX ALGEBRA	 367

Introduction  367
10.1  Matrix Operations and Functions   367
10.2  Solutions of Systems of Linear Equations   387
10.3  Special Matrices   401
Summary  404
Matlab® Summary  406
Key Terms  406
Problems  406

11  •  OTHER KINDS OF ARRAYS	 414

Introduction  414
11.1  Data Types   415

A01_MOOR1204_05_GE_FM.indd 7 31/05/2018 16:58

11.2  Numeric Data Types   415
11.3  Character and String Data   421
11.4  Symbolic Data   429
11.5 L ogical Data   429
11.6  Sparse Arrays   430
11.7  Categorical Arrays   431
11.8 T ime Arrays   431
11.9  Multidimensional Arrays   436
11.10  Cell Arrays   437
11.11  Structure Arrays   439
11.12 T able Arrays   446
Summary  447
Matlab® Summary  448
Key Terms  449
Problems  449

12  •  SYMBOLIC MATHEMATICS	 457

Introduction  457
12.1  Symbolic Algebra   458
12.2  Solving Expressions and Equations   464
12.3  Symbolic Plotting   475
12.4  Calculus   483
12.5  Differential Equations   497
12.6  Converting Symbolic Expressions to Anonymous Functions   501
Summary  502
Matlab® Summary  503
Problems  504

13  •  NUMERICAL TECHNIQUES	 513

13.1  Interpolation   513
13.2  Curve Fitting   523
13.3  Using the Interactive Fitting Tools   536
13.4  Differences and Numerical Differentiation   539
13.5  Numerical Integration   548
13.6  Solving Differential Equations Numerically   554
Summary  561
Matlab® Summary  563
Key Terms  563
Problems  564

14  •  ADVANCED GRAPHICS	 573

Introduction  573
14.1  Images   573
14.2  Graphics Objects   588
14.3 A nimation   594

8  Contents

A01_MOOR1204_05_GE_FM.indd 8 31/05/2018 16:58

14.4  Other Visualization Techniques   601
14.5  Introduction to Volume Visualization   603
Summary  606
Matlab® Summary  607
Key Terms  608
Problems  608

15  •  CREATING GRAPHICAL USER INTERFACES	 611

Introduction  611
15.1 A Simple Gui with One User Interaction   612
15.2 �A Graphical User Interface with Multiple User

Interactions—ready_aim_fire   620
15.3 A n Improved ready_aim_fire Program   623
15.4 A Much Better ready_aim_fire Program   625
15.5 B uilt-In Gui Templates   629
Summary  632
Key Terms  632
Problems  632

16  •  SIMULINK®—A BRIEF INTRODUCTION	 634

Introduction  634
16.1 A pplications   634
16.2  Getting Started   635
16.3  Solving Differential Equations with Simulink®   643
Summary  649
Key Terms  650
Problems  650

APPENDIX A  •  �SPECIAL CHARACTERS, COMMANDS,
AND FUNCTIONS	 654

APPENDIX B •  SCALING TECHNIQUES	 669

APPENDIX C •  THE READY_AIM_FIRE GUI	 672

APPENDIX D	 677

INDEX	 679

Contents  9

A01_MOOR1204_05_GE_FM.indd 9 31/05/2018 16:58

This page intentionally left blank

A01_PERL5624_08_GE_FM.indd 24 2/12/18 2:58 PM

About This Book

This book grew out of my experience teaching MATLAB® and other computing
languages to freshmen engineering students at Salt Lake Community College. I
was frustrated by the lack of a text that “started at the beginning.” Although there
were many comprehensive reference books, they assumed a level of both math-
ematical and computer sophistication that my students did not possess. Also, because
MATLAB® was originally adopted by practitioners in the fields of signal processing
and electrical engineering, most of these texts provided examples primarily from
those areas, an approach that didn’t fit with a general engineering curriculum. This
text starts with basic algebra and shows how MATLAB® can be used to solve engineer-
ing problems from a wide range of disciplines. The examples are drawn from con-
cepts introduced in early chemistry and physics classes and freshman and sophomore
engineering classes. A standard problem-solving methodology is used consistently.

The text assumes that the student has a basic understanding of college algebra
and has been introduced to trigonometric concepts; students who are mathemati-
cally more advanced generally progress through the material more rapidly. Although
the text is not intended to teach subjects such as statistics or matrix algebra, when the
MATLAB® techniques related to these subjects are introduced, a brief background
is included. In addition, sections describing MATLAB® techniques for solving prob-
lems by means of calculus and differential equations are introduced near the end of
appropriate chapters. These sections can be assigned for additional study to students
with a more advanced mathematics background, or they may be useful as reference
material as students progress through an engineering curriculum.

The book is intended to be a “hands-on” manual. My students have been most
successful when they read the book while sitting beside a computer and typing in
the examples as they go. Numerous examples are embedded in the text, with more
complicated numbered examples included in each chapter to reinforce the con-
cepts introduced. Practice exercises are included in each chapter to give students
an immediate opportunity to use their new skills.

The material is grouped into three sections. The first, An Introduction to Basic
MATLAB® Skills, gets the student started and contains the following chapters:

•	 Chapter 1 shows how MATLAB® is used in engineering and introduces a stand-
ard problem-solving methodology.

•	 Chapter 2 introduces the MATLAB® environment and the skills required to per-
form basic computations. It also introduces MATLAB program files (sometimes
called M-files) , and the concept of organizing code into sections. Doing so early
in the text makes it easier for students to save their work and develop a consist-
ent programming strategy.

•	 Chapter 3 details the wide variety of problems that can be solved with built-in
MATLAB® functions. Background material on many of the functions is provided
to help the student understand how they might be used. For example, the dif-
ference between Gaussian random numbers and uniform random numbers is
described, and examples of each are presented. 11

A01_MOOR1204_05_GE_FM.indd 11 31/05/2018 16:58

•	 Chapter 4 demonstrates the power of formulating problems by using matrices in
MATLAB® and expanding on the techniques employed to define those matrices.
The meshgrid function is introduced in this chapter and is used to solve prob-
lems with two variables. The difficult concept of meshing variables is revisited in
Chapter 5 when surface plots are introduced.

•	 Chapter 5 describes the wide variety of both two-dimensional and three-
dimensional plotting techniques available in MATLAB®. Creating plots via
MATLAB® commands, either from the command window or from within a
MATLAB program, is emphasized. However, the extremely valuable techniques
of interactively editing plots and creating plots directly from the workspace
window are also introduced.

MATLAB® is a powerful programming language that includes the basic
constructs common to most programming languages. Because it is a scripting
language, creating programs and debugging them in MATLAB® is often easier
than in traditional programming languages such as C++. This makes MATLAB®
a valuable tool for introductory programming classes. The second section of
the text, Programming in MATLAB®, introduces students to programming and
consists of the following chapters:

•	 Chapter 6 describes logical functions such as find and demonstrates how they
vary from the if and if/else structures. The switch/case structure is also intro-
duced. The use of logical functions over control structures is emphasized, partly
because students (and teachers) who have previous programming experience
often overlook the advantages of using MATLAB®’s built-in matrix functionality.

•	 Chapter 7 introduces repetition structures, including for loops, while loops, and
midpoint break loops that utilize the break command. Numerous examples are
included because students find these concepts particularly challenging.

•	 Chapter 8 introduces functions that interact with the program user, including
user-defined input, formatted output, and graphical input techniques. The use
of MATLAB®’s debugging tools is also introduced.

•	 Chapter 9 describes how to create and use user-defined functions. It also teaches
students how to create a “toolbox” of functions to use in their own program-
ming projects.

Chapters 1 through 9 taken together are essential for a basic understanding
of MATLAB®, but the chapters in Section 3, Advanced MATLAB® Concepts, do not
depend upon each other. Any or all of these chapters could be used in an introduc-
tory course or could serve as reference material for self-study. Most of the material
is appropriate for freshmen. A two-credit course might include Chapters 1 through
9 plus Chapter 10, while a three-credit course might include Chapters 1 through 14,
but eliminate Sections 12.4, 12.5, 13.4, 13.5, and 13.6, which describe differentiation
techniques, integration techniques, and solution techniques for differential equa-
tions. Chapters 15 and 16 will be interesting to more advanced students, and might
be included in a course delivered to sophomore or junior students instead of to
freshmen. The skills developed in these chapters will be especially useful as students
become more involved in solving engineering problems:

•	 Chapter 10 discusses problem solving with matrix algebra, including dot prod-
ucts, cross products, and the solution of linear systems of equations. Although
matrix algebra is widely used in all engineering fields, it finds early application
in the statics and dynamics classes taken by most engineering majors.

12  About This Book

A01_MOOR1204_05_GE_FM.indd 12 31/05/2018 16:58

•	 Chapter 11 is an introduction to the wide variety of data types available in
MATLAB®. This chapter is especially useful for electrical engineering and com-
puter engineering students.

•	 Chapter 12 introduces MATLAB®’s symbolic mathematics package, built on the
MuPad engine. Students will find this material especially valuable in mathemat-
ics classes. My students tell me that the package is one of the most valuable
sets of techniques introduced in the course. It is something they start using
immediately.

•	 Chapter 13 presents numerical techniques used in a wide variety of applica-
tions, especially curve fitting and statistics. Students value these techniques when
they take laboratory classes such as chemistry or physics or when they take the
labs associated with engineering classes such as heat transfer, fluid dynamics, or
strengths of materials.

•	 Chapter 14 examines graphical techniques used to visualize data. These tech-
niques are especially useful for analyzing the results of numerical analysis cal-
culations, including results from structural analysis, fluid dynamics, and heat
transfer codes.

•	 Chapter 15 introduces MATLAB®’s graphical user interface capability, using the
GUIDE application. Creating their own graphical user interfaces gives students
insight into how the graphical user interfaces they use daily on other computer
platforms are created.

•	 Chapter 16 introduces Simulink®, which is a simulation package built on top of
the MATLAB® platform. Simulink® uses a graphical user interface that allows
programmers to build models of dynamic systems. It has found significant
acceptance in the field of electrical engineering but has wide application across
the engineering spectrum.

Appendix A lists all of the functions and special symbols (or characters) intro-
duced in the text. Appendix B describes strategies for scaling data, so that the result-
ing plots are linear. Appendix C includes the complete MATLAB® code to create
the Ready_Aim_Fire graphical user interface described in Chapter 15. Appendix
D includes the Asheville, North Carolina weather data used in a number of the
example problems.

The following materials are provided on the Instructor’s Resource Center:

•	 M-files containing solutions to practice exercises (These files are also available
on the student version of the website.)

•	 M-files containing solutions to example problems
•	 M-files containing solutions to homework problems
•	 PowerPoint slides for each chapter
•	 All of the figures used in the text, suitable for inclusion in your own PowerPoint

presentations

Appendix E Solutions to Practice Exercises can be found at the following website:
www.pearsonglobaleditions.com/moore

What’s NEW IN THIS EDITION
New versions of MATLAB® are rolled out every six months, which makes keeping any
text up-to-date a challenge. Significant changes were introduced in version 2014b to

About This Book  13

A01_MOOR1204_05_GE_FM.indd 13 31/05/2018 16:58

http://www.pearsonglobaleditions.com/moore

the graphics package. Another major change occurred in 2016 with the addition of
major changes to the symbolic algebra functionality. Multiple new data types were
introduced in both the 2016 updates. The changes in this edition reflect these soft-
ware updates up through R2016b, which include the following:

•	 Screen shots shown in the book were updated to reflect the 2016b release.
•	 The use of subfunctions in MATLAB programs was updated, since functions no

longer need to be stored in separate files.
•	 New functionality and behavior associated with the 2014 graphics update is

included.
•	 The behavior of the symbolic algebra package in MATLAB has changed dramati-

cally, and the impacts are reflected in changes to Chapter 12. The use of implicit
symbolic variables designated with single quotes has largely been eliminated as
an acceptable programming technique. Symbolic plotting functions have been
replaced with newer functions that will accept both symbolic and function input.

•	 New data types, such as table, datetime and strings are introduced.
•	 A number of new functions were introduced throughout the book, largely

related to the new data types introduced in 2016.
•	 Additional problems were added and some problems were modified, based on

the feedback from both instructors and students who have used the book. His-
toric data used in the problems has been updated to current values – for exam-
ple ACE hurricane information now includes data through 2016.

14  About This Book

·	
·	
·	
·	

A01_MOOR1204_05_GE_FM.indd 14 31/05/2018 16:58

Dedication and
Acknowledgments

This project would not have been possible without the support of both my family
and colleagues. Thanks to Mike, Heidi, Meagan, and David, and to my husband, Dr.
Steven Purcell. I also benefited greatly from the suggestions for problems related
to electricity from Lee Brinton and Gene Riggs of the SLCC Electrical Engineering
Department. Their cheerful efforts to educate me on the mysteries of electricity are
much appreciated. I’d also like to thank Quentin McRae, also at SLCC, who made
numerous suggestions that improved the homework problems. And finally, Art Fox
has been my tireless colleague and collaborator for almost 20 years and is responsible
in large part for the success of our MATLAB computing courses at SLCC – especially
the online versions.

This book is dedicated to my father, Professor George E. Moore, who taught in
the Department of Electrical Engineering at the South Dakota School of Mines and
Technology for almost 20 years. Professor Moore earned his college degree at the
age of 54 after a successful career as a pilot in the United States Air Force and was a
living reminder that you are never too old to learn. My mother, Jean Moore, encour-
aged both him and her two daughters to explore outside the box. Her loving support
made it possible for both my sister and I to enjoy careers in engineering—something
few women attempted in the early 1970s. I hope that readers of this text will take a
minute to thank those people in their lives who’ve helped them make their dreams
come true. Thanks Mom and Dad!

15

Acknowledgments for the
Global Edition

Pearson would like to acknowledge and thank Somitra Kumar Sanadhya, Indraprastha
Institute of Information Technology, Delhi, for contributing to the Global Edition,
and Nikhil Marriwala, University Institute of Engineering and Technology, Kuruk-
shetra, for reviewing the Global Edition.

A01_MOOR1204_05_GE_FM.indd 15 31/05/2018 16:58

This page intentionally left blank

A01_PERL5624_08_GE_FM.indd 24 2/12/18 2:58 PM

1.1 WHAT IS MATLAB®?
MATLAB® is one of a number of commercially available mathematical computation
tools, which also include Maple, Mathematica, and MathCad. Despite what proponents
may claim, no single one of these tools is “the best.” Each has strengths and weaknesses.
Each allows you to perform basic mathematical computations. They differ in the way
they handle symbolic calculations and more complicated mathematical processes, such
as matrix manipulation. For example, MATLAB® (short for Matrix Laboratory) excels
at computations involving matrices, whereas Maple excels at symbolic calculations. At
a fundamental level, you can think of these applications as sophisticated computer-
based calculators. They can perform the same functions as your scientific calculator—
and many more. If you have a computer on your desk, you may find yourself using
MATLAB® instead of your calculator for even the simplest mathematical applications
such as balancing your checkbook. In many engineering classes, the use of applications
such as MATLAB® to perform computations is replacing more traditional computer
programming. Although applications such as MATLAB® have become standards tool
for engineers and scientists, this doesn’t mean that you shouldn’t learn a high-level
language such as C++, Java, or Fortran.

Because MATLAB® is so easy to use, you can perform many programming tasks
with it, but it isn’t always the best tool for a programming task. It excels at numerical
calculations—especially matrix calculations—and graphics, but you wouldn’t want to

About MATLAB®1
After reading this chapter, you
should be able to:
• Understand what

MATLAB® is and why it is
widely used in engineering
and science.

• Understand the advantages
and limitations of the stu-
dent edition of MATLAB®.

• Formulate problems using
a structured problem-
solving approach.

Objectives

C H A P T E R

M01_MOOR1204_05_GE_C01.indd 17 30/05/2018 10:37

18  Chapter 1  About MATLAB®

use it to write a word-processing program. For large applications, such as operating
systems or design software, C++, Java, or Fortran would be the applications of choice.
(In fact, MATLAB®, which is a large application, was originally written in Fortran
and later rewritten in C, a precursor of C++.) Usually, high-level applications do not
offer easy access to graphing—a task at which MATLAB® excels. The primary area
of overlap between MATLAB® and high-level applications is “number crunching”—
repetitive calculations or the processing of large quantities of data. Both MATLAB®
and high-level applications are good at processing numbers. A “number-crunching”
program is generally easier to write in MATLAB®, but usually it will execute faster
in C++ or Fortran. The one exception to this rule is calculations involving matrices.
MATLAB® is optimized for matrices. Thus, if a problem can be formulated with a
matrix solution, MATLAB® executes substantially faster than a similar program in
a high-level language.

MATLAB® is available as both professional and student versions. The profes-
sional version is probably installed in your college or university computer labora-
tory, but you may enjoy having the student version at home. MATLAB® is updated
regularly; this textbook is based on MATLAB® 7.1. If you are using earlier versions,
you will notice a significant difference in the layout of the graphical user interface;
however, the differences in coding approaches are minor. There are substantial dif-
ferences in versions that predate MATLAB® 5.5.

The standard installation of the professional version of MATLAB® is capable of
solving various technical problems. Additional capability is available in the form of
function toolboxes. These toolboxes are purchased separately, and they may or may
not be available to you. You can find a complete list of the MATLAB® product family
at The MathWorks website, www.mathworks.com.

1.2 STUDENT EDITION OF MATLAB®

The professional and student editions of MATLAB® are very similar. Beginning stu-
dents probably won’t be able to tell the difference. Student editions are available for
Microsoft Windows, Mac, and Linux operating systems, and can be purchased from
college bookstores or online from MathWorks at www.mathworks.com.

MathWorks packages its software in groups called releases, and MATLAB® 7.1
is featured, along with other products, such as Simulink, in Release R2016b®. New
versions are released every six months. Students may purchase just MATLAB, or a
bundle that includes the following products:

•	 Full MATLAB®

•	 Simulink, with the ability to build models with up to 1000 blocks (the profes-
sional version allows an unlimited number of blocks)

•	 Symbolic Math Toolbox
•	 Control Systems Toolbox
•	 Data Acquisition Toolbox
•	 Instrument Control Toolbox
•	 Simulink Control Design
•	 Signal Processing Toolbox
•	 DSP System Toolbox
•	 Statistics and Machine Learning Toolbox
•	 Optimization Toolbox
•	 Image Processing Toolbox
•	 A single-user license, limited to students for use in their classwork (The profes-

sional version is licensed either singly or to a group).

KEY IDEA
MATLAB® is optimized for
matrix calculations.

KEY IDEA
MATLAB® is regularly
updated.

M01_MOOR1204_05_GE_C01.indd 18 30/05/2018 10:37

1.3  How is Matlab® Used in Industry?  19

Toolboxes other than those included with the student edition may be purchased
separately. You should be aware that if you are using a professional installation of
MATLAB®, all of the toolboxes available in the student edition may not be available
to you.

The biggest difference you should notice between the professional and student
editions is the command prompt, which is

>>

in the professional version, and

EDU>>

in the student edition.

1.3 HOW IS MATLAB® USED IN INDUSTRY?
The ability to use tools such as MATLAB® is quickly becoming a requirement for
many engineering positions. A recent job search on Monster.com found the follow-
ing advertisement:

 . . . is looking for a System Test Engineer with Avionics experience. Respon-
sibilities include modification of MATLAB® scripts, execution of Simulink
simulations, and analysis of the results data. Candidate MUST be very famil-
iar with MATLAB®, Simulink, and C++ g . . .

This advertisement isn’t unusual. The same search turned up 771 different com-
panies that specifically required MATLAB® skills for entry-level engineers. Widely
used in engineering and science fields, MATLAB® is particularly popular for elec-
trical engineering applications. The sections that follow outline a few of the many
applications currently using MATLAB®.

1.3.1 Electrical Engineering
MATLAB® is used in electrical engineering for a wide variety of applications. For
example, Figure 1.1 includes several images created to help visualize the arrange-
ments of electromagnetic fields in space and time. These images represent real
physical situations with practical applications. Cellular communications, medical
diagnostics, and home computers are just a few of the technologies that exist thanks
to our understanding of this beautiful phenomenon.

1.3.2 Biomedical Engineering
Medical images are usually saved as dicom files (the Digital Imaging and Communica-
tions in Medicine standard). Dicom files use the file extension .dcm. The MathWorks

KEY IDEA
MATLAB® is widely used in
engineering.

Figure 1.1
Arrangements of
electromagnetic fields.
(a) surface plasmon
polariton; (b) light scattering
by a circular metal cylinder;
(c) beam forming by a six-
element dipole array. (Used
with permission of Dr. James
R. Nagel, University of Utah
Department of Electrical
and Computer Engineering.) (a) (b) (c)

M01_MOOR1204_05_GE_C01.indd 19 30/05/2018 10:37

20  Chapter 1  About MATLAB®

offers an Image Processing Toolbox that can read these files, making their data
available to MATLAB®. (The Image Processing Toolbox is included with the stu-
dent edition, and is optional with the professional edition.) The Image Processing
Toolbox also includes a wide range of functions, many of them especially appropri-
ate for medical imaging. A limited MRI data set that has already been converted to
a format compatible with MATLAB® ships with the standard MATLAB® program.
This data set allows you to try out some of the imaging functions available both with
the standard MATLAB® installation and with the expanded imaging toolbox, if you
have it installed on your computer. Figure 1.2 shows six images of horizontal slices
through the brain based on the MRI data set.

The same data set can be used to construct a three-dimensional image, such as
either of those shown in Figure 1.3. Detailed instructions on how to create these
images are included in the MATLAB® tutorial, accessed from the help button on
the MATLAB® toolbar.

1.3.3 Fluid Dynamics
Calculations describing fluid velocities (speeds and directions) are important in a
number of different fields. Aerospace engineers in particular are interested in the

Figure 1.2
Horizontal slices through
the brain, based on the
sample data file included
with MATLAB®.

Figure 1.3
Three-dimensional
visualization of MRI data,
based on the sample
data set included with
MATLAB®.

M01_MOOR1204_05_GE_C01.indd 20 30/05/2018 10:37

1.4  Problem Solving in Engineering and Science  21

behavior of gases, both outside an aircraft or space vehicle and inside the combus-
tion chambers. Visualizing the three-dimensional behavior of fluids is tricky, but
MATLAB® offers a number of tools that make it easier. Figure 1.4 represents the
flow-field calculation results for a thrust-vector control device as a quiver plot.
Thrust-vector control is the process of changing the direction in which a noz-
zle points (and hence the direction a rocket travels) by pushing on an actuator
(a piston-cylinder device). The model in the figure represents a high-pressure res-
ervoir of gas (a plenum) that eventually feeds into the piston and thus controls the
length of the actuator.

1.4 Problem Solving in Engineering and Science
A consistent approach to solving technical problems is important throughout engi-
neering, science, and computer programming disciplines. The approach we outline
here is useful in courses as diverse as chemistry, physics, thermodynamics, and engi-
neering design. It also applies to the social sciences, such as economics and sociology.
Different authors may formulate their problem-solving schemes differently, but they
all have the same basic format:

•	 State the problem. 
❍❍ Drawing a picture is often helpful in this step.
❍❍ If you do not have a clear understanding of the problem, you are not likely

to be able to solve it.
•	 Describe the input values (knowns) and the required outputs (unknowns).

❍❍ Be careful to include units as you describe the input and output values. Sloppy
handling of units often leads to wrong answers.

❍❍ Identify constants you may need in the calculation, such as the ideal gas con-
stant and the acceleration due to gravity.

KEY IDEA
Always use a systematic
problem-solving strategy.

Figure 1.4
Quiver plot of gas behavior
in a thrust-vector control
device. 2

1.5

0.5

0
0 0.5 1

x-axis

y-
ax

is

Flow Velocities from a Plenum into a Curved Pipe

1.5 2

1

M01_MOOR1204_05_GE_C01.indd 21 30/05/2018 10:37

22  Chapter 1  About MATLAB®

❍❍ If appropriate, label a sketch with the values you have identified, or group
them into a table.

•	 Develop an algorithm to solve the problem. In computer applications, this can
often be accomplished with a hand example. You’ll need to:

❍❍ Identify any equations relating the knowns and unknowns.
❍❍ Work through a simplified version of the problem by hand or with a calculator.

•	 Solve the problem. In this book, this step involves creating a MATLAB® solution.
•	 Test the solution. 

❍❍ Do your results make sense physically?
❍❍ Do they match your sample calculations?
❍❍ Is your answer really what was asked for?
❍❍ Graphs are often useful ways to check your calculations for reasonableness.

If you consistently use a structured problem-solving approach, such as the
one just outlined, you’ll find that “story” problems become much easier to solve.
Example 1.1 illustrates this problem-solving strategy.

 THE CONVERSION OF MATTER TO ENERGY
Albert Einstein (Figure 1.5) is arguably the most famous physicist of the 20th century.
He was born in Germany in 1879 and attended school in both Germany and Switzerland.
While working as a patent clerk in Bern, he developed his famous theory of relativity.
Perhaps the best-known physics equation today is his

E = mc2.

This astonishingly simple equation links the previously separate worlds of mat-
ter and energy, and can be used to find the amount of energy released as matter is
changed in form in both natural and human-made nuclear reactions.

The sun radiates 385 * 1024 J/s of energy, all of which is generated by nuclear
reactions converting matter to energy. Use MATLAB® and Einstein’s equation to
determine how much matter must be converted to energy to produce this much
radiation in one day.

1.	 State the problem
Find the amount of matter necessary to produce the amount of energy radiated
by the sun every day.

2.	 Describe the input and output

Input
Energy: E = 385 * 1024 J/s, which must be converted into the

total energy radiated during one day
Speed of light: c = 3.0 * 108 m/s

Output
Mass m in kg

3.	 Develop a hand example
The energy radiated in one day is

385 * 1024 J/s * 3600 s/h * 24 h/day * 1 day = 3.33 * 1031 J.

EXAMPLE 1.1

M01_MOOR1204_05_GE_C01.indd 22 30/05/2018 10:37

1.4  Problem Solving in Engineering and Science  23

Figure 1.5
Albert Einstein.
(GL Archive/Alamy)

The equation E = mc2 must be solved for m and the values for E and c sub-
stituted. Thus,

 m =
E
c2

 m =
3.33 * 1031 J

(3.0 * 108 m/s)2

 = 3.7 * 1014 J/m2s2.

We can see from the output criteria that we want the mass in kg, so what went
wrong? We need to do one more unit conversion:

 1J = 1 kg m2/s2

 = 3.7 * 1014
J

m2/s2 *
kg m2/s2

J
= 3.7 * 1014 kg

4.	 Develop a MATLAB® solution

At this point, you have not learned how to create MATLAB® code. However, you
should be able to see from the following sample code that MATLAB® syntax
is similar to that used in most algebraic scientific calculators. MATLAB® com-
mands are entered at the prompt (>>), and the results are reported on the next
line. The code is as follows:

>> E=385e24  The user types in this information

E =

   3.8500e+026   This is the computer’s response

>> E=E*3600*24

E =

   3.3264e+031

>> c=3e8

M01_MOOR1204_05_GE_C01.indd 23 30/05/2018 10:37

24  Chapter 1  About MATLAB®

c =

   300000000

>> m=E/c^2

m =

   3.6960e+014

From this point on, we will not show the prompt when describing interactions
in the command window.

5.	 Test the solution
The MATLAB® solution matches the hand calculation, but do the numbers
make sense? Anything times 1014 is a really large number. Consider, however,
that the mass of the sun is 2 * 103 kg. We can calculate how long it would take to
consume the mass of the sun completely at a rate of 3.7 * 1014 kg/day. We have

 Time =
Mass of the sun

Rate of consumption

 Time =
2 * 1030 kg

3.7 * 1014 kg/day
*

year

365 days
= 1.5 * 1013 years.

That’s 15 trillion years! We don’t need to worry about the sun running out of
matter to convert to energy in our lifetimes.

M01_MOOR1204_05_GE_C01.indd 24 30/05/2018 10:37

2.1 GETTING STARTED
Using MATLAB® for the first time is easy; mastering it can take years. In this chapter,
we will introduce you to the MATLAB® environment and show you how to perform
basic mathematical computations. After reading this chapter, you should be able to
start using MATLAB® for homework assignments or on the job. Of course, you will be
able to do more as you complete the rest of the chapters.

Because the procedure for installing MATLAB® depends upon your operating sys-
tem and your computing environment, we will assume that you have already installed
MATLAB® on your computer, or that you are working in a computing laboratory with
MATLAB® already installed. To start MATLAB® in either the Windows or Mac envi-
ronment, double-click on the icon on the desktop, or use the start menu to find the

MATLAB®
Environment2
After reading this chapter, you
should be able to:
• Start the MATLAB® pro-

gram and solve simple
problems in the command
window.

• Understand MATLAB®’s
use of matrices.

• Identify and use the vari-
ous MATLAB® windows.

• Define and use simple
matrices.

• Name and use variables.
• Understand the order

of operation used in
MATLAB®.

• Understand the differ-
ence between scalar, array,
and matrix calculations in
MATLAB®.

• Express numbers in either
floating-point or scientific
notation.

• Adjust the format used to
display numbers in the
command window.

• Save the value of vari-
ables used in a MATLAB®
session.

• Save a series of commands
in a script M-file.

• Use Section mode.

Objectives

C h a p t e r

M02_MOOR1204_05_GE_C02.indd 25 30/05/2018 10:39

26  Chapter 2  MATLAB® Environment

program. In the UNIX environment, type Matlab at the shell prompt. No matter
how you start it, once MATLAB® opens, you should see the MATLAB® prompt (>>
or EDU>>), which tells you MATLAB® is ready for you to enter a command. When
you have finished your MATLAB® session, you can exit MATLAB® by typing quit
or exit at the MATLAB® prompt. MATLAB® also uses the standard Windows menu
bar, so you can exit the program by selecting the close icon (x) at the upper right-
hand corner of the screen. The default MATLAB® screen, which opens each time
you start the program, is shown in Figure 2.1. (There are minor differences in the
MATLAB® desktop, depending on the release.)

To start using MATLAB®, you need be concerned only with the command win-
dow (in the center of the screen). You can perform calculations in the command
window in a manner similar to the way you perform calculations on a scientific cal-
culator. Even most of the syntax is the same. For example, to compute the value of
5 squared, type the command

5^2.

The following output will be displayed:

ans =
 25.

Or, to find the value of cos(p), type

cos(pi)

which results in the output

ans =
 -1.

MATLAB® uses the standard algebraic rules for order of operation, which
becomes important when you chain calculations together. These rules will be dis-
cussed in Section 2.3.2. Notice that the value of pi is built into MATLAB®, so you do
not have to enter it yourself.

Figure 2.1
MATLAB® 2016a opening
window. The MATLAB®
environment consists of
a number of windows,
three of which open in
the default view. Others
open as needed during a
MATLAB® session.

Exit
MATLAB

Show Window
Actions

Command Window

Current folder/directory

Workspace
Window

Toolstrip

Help

KEY IDEA
MATLAB® uses the
standard algebraic rules for
order of operation.

M02_MOOR1204_05_GE_C02.indd 26 30/05/2018 10:39

2.2  Matlab® Windows  27

Before going any further, try Practice Exercise 2.1.

HINT
You may think some of the examples are too simple to type in yourself—that
just reading the material is sufficient. However, you will remember the mate-
rial better if you both read it and type it!

HINT
You may find it frustrating to learn that when you make a mistake, you cannot
just overwrite your command after you have executed it. This occurs because
the command window is creating a list of all the commands you have entered.
You cannot “un-execute” a command, or “un-create” it. What you can do
is enter the command correctly, then execute your new version. MATLAB®
offers several ways to make this easier for you. One way is to use the arrow
keys, usually located on the right-hand side of your keyboard. The up arrow, c ,
allows you to move through the list of commands you have executed. Once
you find the appropriate command, you can edit it, then execute your new
version.

Type the following expressions into MATLAB® at the command prompt,
and observe the results. The correct answers can be found on the Pearson
website.

1.	 5 + 2
2.	 5*2
3.	 5/2
4.	 3 + 2*(4 + 3)
5.	 2.54*8/2.6
6.	 6.3 - 2.1045
7.	 3.6^2
8.	 1+2^2
9.	 sqrt(5)

10.	 cos(pi)

PRACTICE EXERCISE 2.1

2.2 Matlab® Windows
MATLAB® uses several display windows. The default view, shown in Figure 2.1,
includes in the middle, a large command window; located on the right, the workspace
window, and located on the left the current folder window. In addition, the com-
mand history window; document windows, graphics windows, and editing windows will
automatically open when needed. Each will be described in the sections that follow.
MATLAB® also includes a built-in help tutorial that can be accessed from the tool-
strip by selecting the question mark icon, as shown in Figure 2.1. To personalize your
desktop, you can resize any of these windows, stack them on top of each other, close
the ones you are not using, or “undock” them from the desktop by using the “Show
Workspace Actions” menu located in the upper right-hand corner of each window.

M02_MOOR1204_05_GE_C02.indd 27 30/05/2018 10:39

28  Chapter 2  MATLAB® Environment

You can restore the default configuration by selecting Layout on the toolstrip,
then selecting Default, or you can add additional windows by selecting Layout and
choosing the windows you would like to see.

2.2.1 Command Window
The command window is located in the center pane of the default view of the MAT-
LAB® screen, as shown in Figure 2.1. The command window offers an environment
similar to a scratch pad. Using it allows you to save the values you calculate, but not
the commands used to generate those values. If you want to save the command
sequence, you will need to use the editing window to create an a script stored as an
M-file. Scripts are will be described in Section 2.4.2. Both approaches are valuable.
Before we introduce scripts, we will concentrate on using the command window.

2.2.2 Command History
The command history window records the commands you issued in the command
window. It does not open in the default view in MATLAB 2016b, but you can add it to
your desktop by selecting Layout S Command History and checking “docked.” The
examples in this book will show the Command History in a docked configuration.
When you exit MATLAB®, or when you issue the clc command, the command win-
dow is cleared, but the command history window retains a list of all your commands.
You may clear the command history from the “Show Command History Actions” drop-
down menu, located in the upper right-hand corner of the window. If you work on a
public computer, as a security precaution, MATLAB®’s defaults may be set to clear the
history when you exit MATLAB®. If you entered the earlier sample commands listed
in this book, notice that they are repeated in the command history window. This win-
dow is valuable for a number of reasons, including allowing you to review previous
MATLAB® sessions. It can also be used to transfer commands to the command window.
For example, first clear the contents of the command window by typing

clc.

This action clears the command window but leaves the data in the command his-
tory window intact. You can transfer any command from the command history window
to the command window by double-clicking (which also executes the command), or by
clicking and dragging the line of code into the command window. Try double-clicking

cos(pi)

in the command history window. The command is copied into the command window
and executed. It should return

ans =
 -1.

Now click and drag

5^2

from the command history window into the command window. The command will
not execute until you hit Enter, and then you will get the result:

ans =
 25

You will find the command history useful as you perform more complicated
calculations in the command window.

KEY IDEA
The command window is
similar to a scratch pad.

KEY IDEA
The command history
records all of the
commands issued in the
command window.

M02_MOOR1204_05_GE_C02.indd 28 30/05/2018 10:39

2.2.3 Workspace Window
The workspace window keeps track of the variables you have defined as you execute
commands in the command window. These variables represent values stored in the
computer memory, which are available for you to use. If you have been doing the
examples, the workspace window should show just one variable, ans, and indicate
that it has a value of 25, and is a double array:

Name Size Class Value

ans 1 * 1 double 25

(Your view of the workspace window may be slightly different, depending on how
your installation of MATLAB® is configured.)

Set the workspace window to show more about the displayed variables by right-
clicking on the bar with the column labels. Check bytes, in addition to name,
value, class and size. Your workspace window should now display the follow-
ing information, although you may need to resize the window to see all the columns:

Name Size Class Bytes Value

ans 1 * 1 double 8 25

The yellow grid-like symbol indicates that the variable ans is an array. The size,
1 * 1, tells us that it is a single value (one row by one column) and therefore a scalar.
The array uses 8 bytes of memory. MATLAB® was written in C, and the class designa-
tion tells us that in the C language, ans is a double-precision floating-point array.
For our needs, it is enough to know that the variable ans can store a floating-point
number (a number with a decimal point). Actually, MATLAB® considers every num-
ber you enter to be a floating-point number, whether you insert a decimal point
or not.

In addition to information about the size of the arrays and type of data stored
in them, you can also choose to display statistical information about the data. Once
again, right click the bar in the workspace window that displays the column headings.
Notice that you can select from a number of different statistical measures, such as
the max, min, and standard deviation.

You can define additional variables in the command window, and they will be
listed in the workspace window. For example, typing

A = 5

returns

A =
 5.

Notice that the variable A has been added to the workspace window, which lists
variables in alphabetical order. Variables beginning with lowercase letters are listed
first, followed by variables starting with capital letters.

Name Size Class Bytes Value

ans 1 * 1 double 8 25
A 1 * 1 double 8 5

KEY IDEA
The workspace window
lists information describing
all the variables created by
the program.

KEY IDEA
The default data type is
double-precision floating-
point numbers stored in a
matrix.

2.2  Matlab® Windows  29

M02_MOOR1204_05_GE_C02.indd 29 30/05/2018 10:39

30  Chapter 2  MATLAB® Environment

In Section 2.3.2, we will discuss in detail how to enter matrices into MATLAB®.
For now, you can enter a simple one-dimensional matrix by typing

B = [1, 2, 3, 4].

This command returns

B =
 1 2 3 4.

The commas are optional; you would get the same result with

B = [1 2 3 4]

B =

 1 2 3 4.

Notice that the variable B has been added to the workspace window, and that it
is a 1 * 4 array:

Name Size Class Bytes Value

ans 1 * 1 double 8 25
A 1 * 1 double 8   5
B 1 * 4 double 32 [1, 2, 3, 4]

You can define two-dimensional matrices in a similar fashion. Semicolons are
used to separate rows. For example,

C = [1 2 3 4; 10 20 30 40; 5 10 15 20]

returns

C =
 1 2 3 4
 10 20 30 40
 5 10 15 20.

Name Size Class Bytes Value

ans 1 * 1 double 8 25
A 1 * 1 double 8   5
B 1 * 4 double 32 [1, 2, 3, 4]
C 3 * 4 double 96 63 * 4 double 7

Notice that C appears in the workspace window as a 3 * 4 matrix. To conserve
space, the values stored in the matrix are not listed.

You can recall the values for any variable by typing in the variable name. For
example, entering

A

returns

A =
 5.

Although the only variables we have introduced are matrices containing num-
bers, other types of variables are possible.

M02_MOOR1204_05_GE_C02.indd 30 30/05/2018 10:39

